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1. INTRODUCTION 

The discussion below summarizes the ex- 
tended version of the paper, which exceeds the 
page limit for inclusion in the Proceedings. 

This paper shows how to identify and esti- 
mate age, period and cohort effects in models 
which are log- additive with respect to a cate- 
gorical response variable, and discusses the 
source of the identification problem in such 
models. Mason et al. [1973] have a similar 
intent, but focus on models with quantitative 
response variables. 

In the general case we treat there are 
replicated cross -sectional data for each of J 

regularly spaced points in time. Our formal 
considerations apply to a wide variety of data. 
For convenience of reference, however, we shall 
suppose that our data are from sample surveys of 
individuals. Then, for each of the J points in 
time (hereafter periods) the data can be combined 
into age groups of respondents, e.g., 20 -24 years 
of age. We assume that the range in time (e.g., 

years) covered by each age group equals the 

interval in time between successive periods for 

which we have data. Thus, all those in the i -th 
of I age groups in the j -th of J periods cor- 
respond to the same birth cohort as those in age 
group i +l at the subsequent period, j +l. With I 

age groups and J periods there are K = I +J -1 
cohorts. 

We are interested in the effects of age, 

period, and cohort on a categorical response 
variable. For simplicity we begin with a dicho- 
tomous response variable. Let Pijk denote the 

probability of a positive response given age i, 
period j and cohort k = i -j +J. Then one possible 
model of interest is the logistic response model: 

Pijk 
log 

ijk 

= W + Wl(i) 
+ W2(j) + W3(i-j+J) 

(1) 

where the subscripted parameters in (1) are devi- 
ations from W, i.e., 

= 
EjW2(j) EkW3(k) 

O. (2) 

This model postulates simultaneous age, 

period and cohort effects on the log -odds (or 

logit) of the probability of success. The nota- 

tion we use here is consistent with that in 
Bishop, Fienberg and Holland [1975]. The model 

can be expanded to include further explanatory 

variables (e.g., sex, race, socioeconomic status) 

as well as their interaction effects with age, 

period and cohort. The model is directly ana- 

logous to the age -period- cohort model for quanti- 

tative response variables discussed by Mason et 

al. [1973]. 
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The problems of identification and estima- 
tion of model (1) -(2), and ways of arraying the 
data pertinent to model (1) -(2), are most simply 
illustrated for the case in which there are data 
from 3 periods, 3 age groups and, therefore, 5 

cohorts. The extended version of the paper 
subjects the 3x3x2 case to detailed analysis, 
and then proceeds to the IxJx2 general case. 

Here, we shall illustrate one way of arraying 
the data for the case of 3 age groups and 3 
periods, and then state the results for the 

general case in compressed form. 

For the 3 -age group and 3- period case, the 

basic data with which to formulate, estimate and 
assess the adequacy of an age -period- cohort model 

come from a series of surveys, one for each 

period. The data then consist of counts 

j 
}, where = 1 corresponds to a positive 

response and = 2 to a negative response, and 

thus the counts form a 3x3x2 cross -classification 
with the sample sizes (marginal configurations 

fixed by design, as depicted in Table 1. 

It is important to bear in mind that one of the 
first three subscripts is redundant since 

k = i -j +3. 

If we define the expected cell values cor- 
responding to Table 1 under the logistic 
response model (1) -(2) by we have: 

mijkl xijk+Pijk 

and 

mijk2 = xijk+(1 - Pijk) 

The basic logistic response model can now be 

written in terms of expected cell values as: 

Stijk = log mijk2 

= W + W1(i) 
+ W2(j) + W3(i-j+J) 

' 

(3) 

(4) 

(5) 

and analyses involving this model treat the mar- 

ginal configuration {xijk +} 
as fixed, even though 

only the totals {x +jam} are fixed by design. 

Table 1 is just one of several ways in 

which the data can be arrayed. Under certain 

circumstances it may be preferable to construct 

age by cohort or period by cohort tables. Such 

alternative tables are also used in the extended 

version of the paper to aid the exposition of the 

identification problem. 

2. IxJx2 CASE 

A. Identification 

Because cohort is determined uniquely by age 



and period, we must take care to ensure that 
the unique effects of age, period and cohort in 
the logistic response model are estimable. In 
the linear model for quantitative response 
variables analogous to (1) -(2) it is well known 
(Mason et al. [1973]) that all of the parameters 
are not estimable. The same is the case for the 
logistic response model. 

In the case of I age groups and J periods 
it might be supposed that there are I -1 inde- 
pendent parameters for the effect of age on the 
response variable, J -1 for the period effects, 
and I +J -2 for the cohort effects for a total of 
2I +2J -4. It turns out, however, that the number 
of independent effect parameters is 2I +2J -5, 
which is one less than specified by the basic 
logistic response model, (1) -(2). Thus, not all 
of the effect parameters specified by model 
(1) -(2) are identified. 

The source of the identification problem 
can be described in various ways. One useful 
insight is that the effects of age, period and 
cohort contain linear and higher order com- 
ponents (e.g., quadratic components in the 3x3x2 
case). It can be shown that the linear com- 
ponent of any one set of effect parameters (e.g., 

those of age) can not be separated from the 
linear components of the other two sets of para- 
meters. 

In order to estimate all of the independent 
effect parameters of model (1) -(2) it is neces- 
sary to put a single restriction on the model, 
eg., W1(1) 

= W1(3)' W2(1) = constant, or W3(1) 

= W3(2). We refer to such a restriction as an 

identification specification. Different identi- 
fication specifications lead to effectively 
different models. An identification specifica- 
tion is like any other assumption in a statis- 
tical model that is not capable of direct 
verification as part of an analysis; it must be 
grounded in substantive theory relating to the 
data in question or it must come from observa- 
tions on and analyses of other data on related 

phenomena. 

Although the technical aim of making an 
identification specification is to allow the 
estimation of the linear components of the effect 
parameters, the most reasonable types of specifi- 
cations are likely to be that two or more age 
groups, periods or cohorts have the same effects 
on the log- odds -ratios. What is more interesting 
from a substantive point of view than specifying 
a single identification specification, is the 

specification of overidentifying restrictions on 

the effect parameters based on considerable col- 
lateral information. When the resulting model 
fits the data well, not only do we solve the 

identification problem but we also get some ver- 
ification of hypotheses related to the substan- 
tive theory. 

B. Estimation 

Given the logistic response model (1) -(2) 

and J independent simple random samples at 3 

properly spaced points in time, and given an 
identification specification, it is possible to 
obtain maximum likelihood estimates of the effect 
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parameters and of the expected values 

corresponding to the observed frequencies 

{xijk9. The likelihood equations can be solved 

by the Newton -Raphson iterative procedure (Bock 
[1975], Haberman [1974]). Alternatively, for 
sufficiently simple identification specifica- 
tions the likelihood equations can be solved 
using iterative proportional fitting (Bishop, 
Fienberg and. Holland [1975]), or for more com- 
plex identification specifications using 
generalized iterative proportional fitting 
(Darroch and Ratcliff [1972]). If (generalized) 
iterative proportional fitting is used, one 
solves first for the and then for the 

estimated effect parameters. If the Newton - 
Raphson method is used, one solves first for the 
estimated effect parameters. Thus, use of the 

Newton -Raphson method requires prior resolution 
of the identification problem. This method has 
been programmed for general purpose work with 
discrete data (Bock and Yates, [1973]) and is 
preferable to iterative scaling for several 
reasons. The extended version of the paper 
discusses estimation in more detail than is 
possible here. 

C. Degrees of Freedom 

Degrees of freedom equal the number of con- 
ditional log -odds for the response variable minus 

the number of independent effect parameters minus 
one (for the grand mean). For the "full" model, 
i.e., the model in which only one identification 
specification has been made, there are (I- 2)(J -2) 
degrees of freedom. Table 2 lists the full model 
and the 7 possible reduced models (to be dis- 

cussed below), and the associated minimal suf- 
ficient statistics and degrees of freedom. Good- 

man [1975] gives a similar table. 

D. Goodness of Fit 

Once we have estimated expected cell 
values, we can test the goodness -of -fit of model 
(1) -(2) using either the Pearson statistic, 

X2 

2 

(6) 

mijkk 

or the likelihood ratio statistic, 

G2 = 
ijk2 

(7) 

If the model is correct then either statistic is 

asymptotically distributed as a chi -square 
variate with degrees of freedom determined as 
described above. 

E. Reduced Models 

If the logistic response model with age, 
period and cohort effects, and with an associated 

identification specification, provides an ac- 
ceptable fit to the data, then we would logically 
wish to explore whether only two sets of effects 
may suffice, i.e., whether we can equate one set 
of effects (age or period or cohort) to zero. 

Fitting such reduced models is a straightforward 



task with any computer program designed to fit 
standard loglinear models to multidimensional 
arrays (with or without structural zeros). There 
is no longer an identification problem when we 
deal with reduced models because there is no way 
for a linear component for one type of effect to 
become confounded with the other two types. 

The fit of reduced models can be assessed 
using the standard goodness -of -fit statistics, 
(6) and (7), and we can compare the fit of the 
reduced models to the specified age -period- cohort 
models using the log -likelihood -ratio statistic 
for nested models, i.e., the conditional likeli- 
hood ratio test for the fit of the reduced 
model given that the age -period- cohort model is 

correct. In a similar fashion we can fit 
reduced models with only one set of effect para- 
meters. Degrees of freedom and other information 
for reduced models are given in Table 2. 

3. MULTIVARIATE QUALITATIVE RESPONSE MODELS 

We have thus far dealt with logistic 
response models measuring the effects of age, 
period, and cohort on a dichotomous response 
variate. Here we consider two extensions of 
these models for polytomous response variates. 
Suppose the response variable has L categories, 
and the basic data array is the IxJxL age - 
period- response table (alternatively, the 

Ix(I +J -1)xL age- cohort -response table, or the 

Jx(I +J -1)xL period- cohort -response table). As 

before, we label the counts in the array using 
four subscripts, i.e., where = 1,2,..., 

L, and we denote the corresponding expected cell 
values by When we had a dichotomous 

response variate we considered a model for the 
single logit structure,log(mijkl/mijk2). Now 

that we have L categories for our response vari- 
able we would like to consider models for L -1 
different logit structures. Two possible ways 
to define these are: 

(i) log for = 1,2,..., L -1 , (8) 

and 

(ii) log for 1,2,..., L -1 . (9) 

mijkR +1 

If we would like to fit models with the 

same parametric structure to the L -1 logits, and 

to have them correspond as a group to a log - 

linear model for the 
{mijkg 

then our choice 

would be (9). (Note that (9), in such circum- 

stances, is equivalent to models with the same 
parametric structure for the L -1 logits 

(iii) logfor = 1,2,..., L -1 , (10) 

mijkL 

or any other set of L -1 logits involving the 
logarithm of the odds for pairs of expected 
values). The generalization of the logistic 
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response model we would consider for (9) is: 

lo 

(R) (11) 
W1(i) + + 

. (for = 1,2,..., L-1), 

where 

E = = E = . 

i 1(i) 2(j) k 3(k) 
(12) 

All of the earlier results for the dichotomous 
response variate carry over immediately to this 
set of models as long as we make sure that (a) 

summations involving the fourth subscript run up 

to L instead of 2, and (b) the degrees of 
freedom listed in Table 2 are all multiplied by 
L -1. 

If the L response categories are ordered 

and it makes substantive sense to think of the 
effects linking the response variable to age, 

period, and cohort as increasing linearly with 
the category number (e.g., the category number 

represents some latent variable), then we may 
wish to test for the equality of various effect 
parameters, e.g., 

w1(i) = w1(i) 
for = 1,2,..., L -1 . (13) 

Such reduced models can be handled without 

trouble using the methodology of loglinear 
models with ordered categories for some of the 
variables (see, e.g., Fienberg [1977]). 

When the response categories have a na- 
tural order, e.g., educational attainment (grade 
school, high school, college, graduate school), 

the other choice of logits, in expression (8) 

may be preferable. The quantities 

(mi E 
are often referred to as 

j j 

continuation ratios, and they are of substantive 

interest in various fields. There is also a 

technical reason for working with the logits in 

expression (8). Let be the probability of 

a response in category given age i and period 

j, where 
= 

1. Then, when the 

consist of observations from IJ independent 

multinomial variables with sample sizes {xijk 

and cell probabilities 

xijk+ PijkR ' 

so that 

mijkR 

(14) 

(15) 



We can write the multinominal likelihood func- 
tions as products of L -1 binomial likelihoods, 
the -th of which has sample sizes 

- 
and cell probabilities This 

means that if we use the method of maximum like- 
lihood to estimate the parameters in the logistic 
response models 

(R) 
log 

= 
W + 

W1(1) + W2(j) 

+ 
W3(i-j+J) ' 

(for 1,2,..., L-1) , 

in which the age group intervals are not iden- 
tical to the period intervals. We examine in 
particular the case of r -year (e.g., 5 -year) 
age groups and 2r -year (e.g., 10 -year) periods. 
Once an identification specification has been 
made for this case, estimation can proceed as 
described earlier. 

5. EXAMPLE 

The extended version of the paper includes 
a detailed analysis of the educational attain- 
ment of white males. The data are from the 
U.S. Decennial Censuses of 1940 -1970. Education 
is treated as a set of continuation ratios, and 

(16) an overidentified age -period- cohort model is fit 
to the various logged continuation ratios. 
Reduced models are also fit and discussed. 

subject to (12), then we can do the estimation 
separately for each logit model using methods 
applicable to dichotomous response variates, and 
we can simply add individual chi -square sta- 
tistics to get an overall goodness -of -fit sta- 
tistic for the set of models. Moreover, the 
observed binomial proportions 

= 1,2,..., L-1 , (17) 

are asymptotically independent of each other so 
that we can assess the fit to the L -1 logit 
models,and various associated reduced models, 
independently. 

For the logistic response models in (16) 
it might be of substantive interest to explore 
the equality of parameters across models as in 
expression (13). The estimated expected values 
for such models and the associated tests of fit 
can be handled with each by thinking in terms 
of a set of counts with 5 subscripts, 

where 

for t = 1 

ijk for t = 2 . 
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Now, if we let be the expected value 

under model (16) corresponding. to then 

we fit the L -1 models simultaneously by fitting 
a hierarchical loglinear model to the 

with minimal sufficient statistics 

{yijk +t {y +j 
If we 

restrict the model so that (13) holds we fit the 

loglinear model with minimal sufficient sta- 
tistics {yijk +t}, + {y +j 

We can also handle similar reduced models involv- 
ing equality of period and cohort effects across 
the L -1 logistic response structures. 

4. OTHER EXTENSIONS 

In the detailed paper we consider the 
identification problem for a subset of the cases 
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Table 1: Age by Period Display 

Positive Response 

Period 

1 2 3 

x1131 
x1221 x1311 

2 x2141 
x2231 x2321 

3 x3151 
x3241 x3331 

Age 

Negative Response 

Period 

1 2 3 

1 x1132 
x1222 x1312 

2 x2142 
x2232 x2322 

3 x3152 
x3242 x3332 

Table 2: 

Subscripted 
Logistic Parameters 

in Model (1) 

Information Associated with Model (1), 

and Various Reduced Models 

Degrees of Minimal Sufficient 
Freedom Statistics* 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

None 

Age 

Period 

Cohort 

Age, Period 

Age, Cohort 

Period; Cohort 

Age, Period, Cohort 

IJ-1 

I(J -1) 

J(I -1) 

(I- 1)(J -1) 

(I- 1)(J -1) 

'(I- 1)(J -2) 

(I- 2)(J -1) 

(I- 2)(J -2) 

{x } 

{x. {x } 

{x, }, 

{x +j 

{x 
+4, 

}, 

* 
For each model we always include the totals, 

ture, as well as the statistics listed. 

}, implied by the logistic struc- 
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